
Python H Bharath Bhat 1

Python - H Bharath Bhat

➡Created by H Bharath Bhat
Contents

H Bharath Bhat➡Created by
Contents
Greatest Common Divisor

Steps
An algorithm for gcd(m, n)
Better code
Best code
Even more better
Better code than before

Euclidʼs Algorithm
Euclidʼs Algorithm using while condition
Euclidʼs Extended Version

While Condition
Python and its Environment

Compiler
Interpreter
Running a Python program
Resources
Typical Python Program

Basics of Python
Assignment Statement
Names, values and types
Numeric Values

Operations on Numbers
Boolean Values: bool
Strings

Operations on Strings
Extracting a Substring
Modifying Strings

Lists
Nested List
List Operations
Copying list

http://hbharathbhat.github.io/
http://hbharathbhat.github.io/

Python H Bharath Bhat 2

Digression on equality
Concatenation of Lists

Tuples
Dictionaries

Operating on dictionaries
Dictionary v/s lists

Execution of typical python program
Control Flow

Conditional Execution
If Statement
Multiway Branching, elif

Loops: Repeated actions
for loop
while conditional loop
Break and Continue statements

Function Definition
Passing values to functions
Scope of names in a function
Defining Functions
Recursive Functions
Passing Arguments by Name
Default Arguments
Function definitions
Examples

Arrays and lists
Arrays
Lists

Operations
Operating on Lists
List Comprehension

Binary Search
Efficiency

Sorting
Selection Sort

Analysis of Selection sort
Insertion Sort

Analysis of Insertion Sort
Recursive Computation
Inductive Definitions for lists

Merge Sort
Procedure
Analysis of Merge
Analysis of Merge Sort
Merge Sort: Shortcomings

Quick Sort
Alternative approach to Merge Sort
Divide and conquer without merging
Quick Sort: Algorithm
Quick Sort: Partitioning
Analysis of Quick Sort
Quicksort: Randomization
Stable Sorting
Quicksort in Practice

Exception Handling
Common Errors
Exception Handling
Types of Errors

Syntax Errors
Run Time Errors

Terminologies
Handling exceptions

Using Exception Handling in a Positive Manner
Interacting with the user

Python H Bharath Bhat 3

Algorithm
� Algorithm: how to systematically perform a task

� Programming language describes the step

� Algorithms that manipulate information:

Compute numerical functions - f(x,y)

Reorganize data - arrange in ascending order

Optimization - find the shortest route

Inputs
Outputs

Printing on screen
Fine tuning print()
Formatting Print

Dealing with Files
Disk Buffers
Reading/writing disk data

Opening a file
Reading of a file
Write to a file
Closing a file

Processing file line by line
Strip new line character

String Processing
Strip Whitespaces
Searching for text

Search and Replace
Splitting a string
Joining Strings
Converting Case
Resizing Strings
Other Functions
String format() method
Formatting

Doing Nothing in Python
The value None

Removing a list entry
Global Variables

Scope of a Name
Global Variables
Nest Function Definitions

Data Structures
Sets in python

Set operations
Stacks
Queues

Python H Bharath Bhat 4

Greatest Common Divisor
gcd(m, n)

gcd must be the common divisor which divides both the numbers

for example: gcd(8, 12 4

1 divides every number

Steps
� List out factors of m

� List out factors of n

� Report the largest number that appears in the list

def gcd(m, n):

 m_multiples = []

 n_multiples = []

 for i in range(1, m+1):

Python H Bharath Bhat 5

 if m%i == 0:

 m_multiples.append(i)

 for i in range(1, n+1):

 if n%i == 0:

 n_multiples.append(i)

 for i in range (0, len(m_multiples)):

 for j in range(0, len(n_multiples)):

 if m_multiples[i] == n_multiples[j]:

 gcd = m_multiples[i]

 return gcd

print(gcd(8,12))

print(gcd(18,25))

'''

Outputs

4

1

'''

Program is a sequence of steps

Some steps are repeated

And some steps are executed conditionally

An algorithm for gcd(m, n)
� Use fm, fn for list of m, n respectively

� For each i from 1 to m, add(append) i to fm if i divides m

� For each j from 1 to n, add(append) j to fm if j divides n

� Use cf for list of common factors

� For each f in fm, add f to cf if f also appears in fn

� Return rightmost value in cf (largest value)

Better code
� We scan from 1 to m to compute fm and again from 1 to n to compute fn

� Instead we can scan only once

a� For each i in 1 to max(m,n) add i to fm if i divides m and add i to fn if i divides n

Best code
� Compare them to compute common factors cf, at one shot

a� For each i in 1 to max(m,n), if i divides m and i also divides n, then add i to cf

� Actually, any common factor must be less than min(m,n)

a� For each i in 1 to min(m,n), if i divides m and i also divides n, then add i to cf

Python H Bharath Bhat 6

def gcd(m,n):

 multiples = []

 for i in range (1, min(m,n)+1):

 if m%i == 0 and n%i == 0:

 multiples.append(i)

 return max(multiples)

print(gcd(8,12))

print(gcd(18,25))

'''

Outputs

4

1

'''

Even more better
� We do not require any list at all, a value can be stored in a variable

def gcd(m,n):

 for i in range (1, min(m,n)+1):

 if m%i == 0 and n%i == 0:

 gcd = i

 return gcd

print(gcd(8,12))

print(gcd(18,25))

'''

Outputs

4

1

'''

Better code than before
Can be made even more efficient by scanning backwards instead of from 1

Let i run from min(m,n) to 1

def gcd(m,n):

 i = min(m,n)

 while i > 0:

 if m%i == 0 and n%i == 0:

 return i

 else:

 i = i-1

print(gcd(8,12))

print(gcd(18,25))

'''

Outputs

Python H Bharath Bhat 7

4

1

'''

Euclidʼs Algorithm
� Suppose d divides both m and n, and m>n

� Then m = a*d, n = b*d

� So m-n = ad - bd = (a-b)*d

� d divides m-n as well

� So gcd(m,n) = gcd(n,m-n)

Consider gcd(m,n) with m>n

If n divides m, return n

Otherwise, compute gcd(n, m-n) and return that value

def gcd(m,n):

Assume m>=n [comment]

 if m<n:

 (m,n)=(n,m)

 if m%n == 0:

 return n

 else:

 diff = m-n

 return(gcd(max(n,diff),min(n,diff))) # Recursion

print(gcd(8,12))

print(gcd(18,25))

'''

Outputs

4

1

'''

m-n must be at least 1, if it is 0 then m%n 0, hence it returns the smaller value i.e n

Euclidʼs Algorithm using while condition

def gcd(m,n):

 if m<n:

 (m,n)=(n,m)

 while m%n != 0:

 diff = m-n

 (m,n) = (max(n,diff),min(n,diff))

 return n

print(gcd(8,12))

print(gcd(18,25))

'''

Outputs

Python H Bharath Bhat 8

4

1

'''

Euclidʼs Extended Version

Consider gcd(m,n) with m>n

If n divides m, return n

Otherwise, let r = m%n

Return gcd(n,r)

def gcd(m,n):

 if m<n:

 (m,n)=(n,m)

 if m%n == 0:

 return n

 else:

 return gcd(n,m%n) # m%n <n, always

print(gcd(8,12))

print(gcd(18,25))

'''

Outputs

4

1

'''

While Condition

while condition:

step 1

step 2

step 3

� Don't know in advance how many times we will repeat the steps

� Should be careful to ensure the loop terminates, eventually the condition should become false

Python and its Environment
Compiler
Translates high level programming language to machine level instructions, generates “executableˮ code.

Interpreter
Itself is a program that runs and directly “understandsˮ high level programming language.

Python is basically an interpreted language

Load the Python interpreter

Send Python commands to the interpreter to be executed

Easy to interactively explore language features

Python H Bharath Bhat 9

Can load complex programs from files

>>>from filename import *

Running a Python program

Resources
https://docs.python.org/3/tutorial/index.html

Dive into Python3, Mark Pilgrim: https://www.diveintopython3.net

Think Python, 2nd Edition, Allen B. Downey: https://greenteapress.com/wp/think-python-2e/

Typical Python Program
� Interpreter executes statements from top to bottom

� Function definitions are “digestedˮ for future use

def function01(x,y):

return x*y

def function02(m,n):

return m-n

def function03(a,b):

return a+b

statement_01

statement_02

:

:

:

statement_n

� Actual program starts from statement_01

� Python allows free mixing of function definitions and statements

Basics of Python
Assignment Statement

Assign a value to a name (variable)

https://docs.python.org/3/tutorial/index.html
https://www.diveintopython3.net/
https://greenteapress.com/wp/think-python-2e/

Python H Bharath Bhat 10

i = 5

j = 2*i

j = j + 5 # statement that updates a value

Left hand side is a name

Right hand side is an expression

Operations in expression depend on type of value

Names, values and types
Values have types

Type determines what operations are legal

Names inherit their type from their current value

Type of a name is not fixed

Unlike C/C/Java where each name is declared in advance with its type.

Names can be assigned values of different values as the program evolves

i = 5 # i is int

i = 7*1 # i is still int

j = i/3 # j is float, creates float

...

i = 2*j # i is now float

type(e) returns type of e

i = 5

j = 5.55

print(type(i))

print(type(j))

'''

Outputs

<class 'int'>

<class 'float'>

'''

Not good style to assign values of mixed types to same names

Numeric Values
Numbers come in two flavors:

� int - integers

Ex: 178, 87, 0, 76

� float - fractional numbers

Ex: 0.1, 3.14, 0.01

Internally, a value is stored as a finite sequence of 0ʼs and 1ʼs (binary digits, or bits)

 For an int, this sequence is read off as a binary number

For a float, this sequence breaks up into a mantissa and exponent

Python H Bharath Bhat 11

Like “scientificˮ notation: 0.602 10^24

Operations on Numbers
Normal arithmetic operations: +, -, *, /

Divide (/) always produces a float

Quotient and remainder: // and %

9//5 is 1; 9%5 is 4

Exponentiation: **

3**4 is 81

Other operations on Numbers

log(), sqrt(), sin(), ….

Built on Python, but not available by default

Must include math library

from math import *

Boolean Values: bool
True, False

Logical Operators: not, and, or

not True is False, not False is True

x and y is True if both of x, y are True

x or y is True if at least one of x, y is True

Frequent ways: Comparisons

x == y, a ≠ b, z 175, n>m, 19 44*d

x = 5

y = 5

z = 8

print(x == y)

print(x == z)

print(x != z)

'''

Outputs

True

False

True

'''

Combine using Logical Operators

n 0 and m%n 0

x = 5

y = 5

z = 8

print(x == y and x == z)

print(x == y or x == z)

print(x == y and x != z)

Python H Bharath Bhat 12

print(x == y or x != z)

'''

Outputs

False

True

True

True

'''

Example

def divides(m, n):

 if m%n == 0:

 return True

 else:

 return False

def even(n):

 return divides(n,2)

def odd(n):

 return not divides(n,2)

print(divides(12,4))

print(divides(12,5))

print(even(4))

print(even(5))

print(odd(4))

print(odd(5))

'''

Outputs

True

False

True

False

False

True

'''

Strings
Type string, str, a sequence of characters

A single character is a string of length 1

No separate type char

Enclose in quotes - single, double, or even triple

Backslash can also be used to print a single quote inside a string enclosed within a single quote

print("Bharath's")

print('Bharath\'s')

print("'Bharath'")

name = '''Bharath is a "gangster's brother"'''

Python H Bharath Bhat 13

print(name)

'''

Outputs

Bharath's

Bharath's

'Bharath'

Bharath is a "gangster's brother"

'''

Positions 0, 1, 2, 3,….n-1 for a string of length n

 Eg: s = ˮhelloˮ

0 1 2 3 4

h e l l o

5 4 3 2 1

name = "bharath's"

for i in range (0,len(name)):

 print(i, name[i])

print('\n')

for i in range (-len(name), 0):

 print(i, name[i])

'''

Outputs

0 b

1 h

2 a

3 r

4 a

5 t

6 h

7 '

8 s

-9 b

-8 h

-7 a

-6 r

-5 a

-4 t

-3 h

-2 '

-1 s

'''

Operations on Strings
Combine two strings: concatenation, operator +

Concatenation (+) does not put any spaces in between by default

print('Bharath'+'is my name')

print('Bharath '+'is my name')

Python H Bharath Bhat 14

print('Bharath','is my name')

print(len("bharath"))

'''

Outputs

Bharathis my name

Bharath is my name

Bharath is my name

7

'''

Extracting a Substring
A slice is a “segmentˮ of a string

s = "hello"

print(s[1:4])

print(s[1:5])

print(s[2:])

print(s[:4])

print(s[-5:])

print(s[-4:-1])

print(s[:-1])

'''

Outputs

ell

ello

llo

hell

hello

ell

hell

'''

Modifying Strings
Cannot update a string “in placeˮ

s = “hello ,ˮ want to change to “help!ˮ

s[3] = p - throws error

Instead, use slices and concatenation

s = s[03] + “p!ˮ

Strings are immutable values

Python H Bharath Bhat 15

s = s[:3]+"p!"

print(s)

'''

Output

help!

'''

Lists
Sequences of values

factors = 1, 2, 3, 4

names = [ʼbharath ,̓ ‘bhavya ,̓ ‘sharathʼ]

Type need not be uniform

mixed = 1, 'bharath', 2, 'sharathʼ]

Extract values by position, slice, like str

factors[3] is 4, mixed[02] is 2, ‘sharathʼ]

Length is given by len()

len(names) is 3

For str, both a single position and a slice return strings

s = "hello"

print(s[0]) # returns a string itself

print(s[0:1]) # returns a string itself

'''

h

h

'''

For lists, a single position returns a value, a slice returns a list

mixed = [1, 'bharath', 2, "sharath"]

for i in range(0, len(mixed)):

 print(mixed[i])

print(mixed[1:])

print(mixed[:])

'''

Outputs

1

bharath

2

sharath

['bharath', 2, 'sharath']

[1, 'bharath', 2, 'sharath']

'''

Nested List

Python H Bharath Bhat 16

Lists can contain other lists too

mixed.append([2,3])

print(mixed)

mixed.insert(2, ['hrushik', 'ramya']) # list.insert(index, element)

print(mixed)

'''

Outputs

[1, 'bharath', 2, 'sharath', [2, 3]]

[1, 'bharath', ['hrushik', 'ramya'], 2, 'sharath', [2, 3]]

'''

for i in range(0, len(mixed)):

 print(mixed[i])

'''

Outputs

1

bharath

['hrushik', 'ramya']

2

sharath

[2, 3]

'''

print(mixed[2][0])

print(mixed[2][0][1])

print(mixed[2][0][3:])

'''

Outputs

hrushik

r

shik

'''

Unlike strings, lists can be updated in place

mixed[2][0] = 'hrasika'

print(mixed)

mixed[2] = ['bengaluru', 'chennai', 'mumbai']

print(mixed)

'''

Outputs

[1, 'bharath', ['hrasika', 'ramya'], 2, 'sharath', [2, 3]]

[1, 'bharath', ['bengaluru', 'chennai', 'mumbai'], 2, 'sharath', [2, 3]]

'''

Lists are mutable, unlike strings

Python H Bharath Bhat 17

sample = [0, 1, 2, 3]

sample[1] = 2

print(sample)

'''

Outputs

[0, 2, 2, 3]

'''

List Operations
We can add elements to a list using append() and extend()

Remove elements using remove() or pop()

Sort and reverse lists using sort() and reverse()

sample = [3, 1, 4, 1, 5, 9]

sample.append(2)

sample.extend([6, 5])

sample.remove(3) # removes the first occurence in the list

sample.pop()

sample.sort()

sample.reverse()

sample[2] = 'n'

sample.extend([3,4,5]) # list must always be passed in case of extend method

print(sample)

'''

Outputs

sample: [3, 1, 4, 1, 5, 9]

sample.append(2): [3, 1, 4, 1, 5, 9, 2]

sample.extend([6, 5]): [3, 1, 4, 1, 5, 9, 2, 6, 5]

sample.remove(3): [1, 4, 1, 5, 9, 2, 6, 5]

sample.pop(): [1, 4, 1, 5, 9, 2, 6]

sample.sort(): [1, 1, 2, 4, 5, 6, 9]

sample.reverse(): [9, 6, 5, 4, 2, 1, 1]

sample[2] = 'n' [9, 6, 'n', 4, 2, 1, 1]

sample.extend([3,4,5]) [9, 6, 'n', 4, 2, 1, 1, 3, 4, 5]

'''

list1.append(value) - extends the list by a single element passed in the parantheses

list1.extend([list]) - extends list by a list of values

remove() removes only the first occurrence in the list

Safely removes ‘nʼ from list - sample

if 'n' in sample:

 sample.remove('n')

print(sample)

'''

Output

[9, 6, 4, 2, 1, 1, 3, 4, 5]

'''

Remove all occurrences of element in the list

Python H Bharath Bhat 18

while 4 in sample:

 sample.remove(4)

print(sample)

'''

Output

[9, 6, 2, 1, 1, 3, 5]

'''

Other Functions

index() method returns the index of the leftmost occurrence of the element

sample.sort()

print(sample)

print(sample.index(5))

'''

Outputs

[1, 1, 2, 3, 5, 6, 9]

4

'''

What happens when we assign names?

x = 5

y = x

x = 7

print("x: ",x)

print("y: ",y)

'''

Outputs

x: 7

y: 5

'''

Does assignment copy the value or make both names point to the same value.

For immutable value, we can assume that assignment makes a fresh copy of a value.

Values apply for all types

Updating one value does not effect the copy

For mutable values, assignment does not make a fresh copy.

list1 = [1,2,3,4]

list2 = list1

list1[2] = 'n'

print(list1)

print(list2)

'''

Outputs

[1, 2, 'n', 4]

[1, 2, 'n', 4]

'''

Python H Bharath Bhat 19

What is list22 now?

list22 is also ‘nʼ

list1 and list2 are the same names for the same list.

Copying list
How can we make a copy of a list?

A slice creates a new (sub) list from the old one

l[:k] is l[0:k], l[k:] is l[k:len(l)]

l[:] == l[0:len(l)]

Omitting both end points gives a full slice

lista = [5, 6, 7, 8, 9]

listb = lista[:]

lista[2] = 'm'

print(lista)

print(listb)

'''

Outputs

[5, 6, 'm', 8, 9]

[5, 6, 7, 8, 9]

'''

Concatenation produces a new list

list1 = [1,3,5,7]

list2 = list1

list1 = list1[0:2] + [7] + list1[3:]

print(list1, list2)

'''

Output

[1, 3, 7, 7] [1, 3, 5, 7]

'''

Digression on equality

lista = [5, 6, 7, 8, 9]

listb = lista

listc = listb

listc[2] = 'n'

print(lista,listb, listc)

'''

Outputs

[5, 6, 'n', 8, 9] [5, 6, 'n', 8, 9] [5, 6, 'n', 8, 9]

'''

Python H Bharath Bhat 20

lista = [5, 6, 7, 8, 9]

listb = [5, 6, 7, 8, 9]

listc = listb

print(lista == listb)

print(lista == listc)

print(listc == listb)

print(lista is listb)

print(lista is listc)

print(listc is listb)

listc[2] = 'n'

print(lista,listb, listc)

'''

Outputs

True

True

True

False

False

True

[5, 6, 7, 8, 9] [5, 6, 'n', 8, 9] [5, 6, 'n', 8, 9]

'''

Concatenation of Lists

listd = lista + listb

listd + [8]

print(listd)

'''

Outputs

[5, 6, 7, 8, 9, 5, 6, 'n', 8, 9]

'''

Concatenation ‘+ʼ always produces a new list

list1 = [1, 2, 3, 4]

list2 = list1

list1 = list1 + [9]

print(list1, list2)

'''

Outputs

[1, 2, 3, 4, 9] [1, 2, 3, 4]

'''

Tuples
Simultaneous Assignments in rounded brackets

(age, name, primes) = (23, "Bharath", [2,3,5])

print(age)

print(name)

print(primes)

Python H Bharath Bhat 21

'''

Outputs

23

Bharath

[2, 3, 5]

'''

Can assign a ‘tupleʼ of values to a name

point = (3.5, 4.8)

date = (18,4,2024)

print(point)

print(date)

'''

Outputs

(3.5, 4.8)

(18,4,2024)

'''

Extract positions, slices

xCoOrdinate = point[0]

monthYear = date[1:]

print(xCoOrdinate, monthYear)

'''

Outputs

3.5 (4, 2024)

'''

Tuple is immutable, unlike Lists

l = 13, 46, 0, 25, 72

View l as a function associating values to a positions

l = 0,1,.., 4 integers

l[0] 13, l[4] 72

0, 1, 2, .., 4 are keys

Dictionaries
Allow keys other than range(0, n)

Key could be a string

test1ˮDhawanˮ] 84

In python we call it dictionary

In other languages it is called associative array

Any immutable value is known as key

Python H Bharath Bhat 22

Can update dictionaries in place - mutable, like lists

Empty dictionary is { }

Initialization: test1

test1 // list

test1 // tuple

Keys can be immutable values

int , float, bool, string, tuple

Keys cannot be:

list, dictionary

Can nest dictionary

score = {}

score["test1"] = {}

score["test2"] = {}

score["test1"]["dhawan"] = 84

score["test2"]["dhawan"] = 27

score["test1"]["kohli"] = 100

print(score)

'''

Outputs

{'test1': {'dhawan': 84, 'kohli': 100}, 'test2': {'dhawan': 27}}

'''

Operating on dictionaries
score.keys() returns sequence of keys of dictionary score

for k in score.keys():

 print(k)

'''

Outputs

test1

test2

'''

score.keys() is not in any predictable order

score = {}

score["test2"] = {}

score["test1"] = {}

score["test2"]["dhawan"] = 84

score["test1"]["dhawan"] = 27

score["test2"]["kohli"] = 100

print(score)

for k in score.keys():

 print(k)

print("\n")

for k in sorted(score.keys()):

 print(k)

print(list(score.keys()))

'''

Python H Bharath Bhat 23

Outputs

{'test2': {'dhawan': 84, 'kohli': 100}, 'test1': {'dhawan': 27}}

test2

test1

test1

test2

['test2', 'test1']

'''

sorted(l) returns sorted copy of l, l.sort() sorts l in place

score.keys() is not a list - use list(score.keys())

Similarly, score.values() is sequence of values in score

for s in score.values():

 print(s)

'''

Outputs

{'dhawan': 84, 'kohli': 100}

{'dhawan': 27}

'''

Test for key using in, like in membership

/code

Dictionary v/s lists
Assigning to an unknown key inserts an entry

d = { }

d[0] 7 # No problem, d == 0 7

Unlike a list

l = []

l[0] 7 # index error

Execution of typical python program

def function01(x,y):

return x*y

def function02(m,n):

return m-n

def function03(a,b):

return a+b

statement_01

statement_02

:

:

:

statement_n

Interpreter executes the program from top to bottom

Function definitions are ‘digestedʼ for future use only.

Actual computation starts from statement_01.

Python H Bharath Bhat 24

Control Flow
Need to vary computation steps as values change

Control flow determines order in which statements are executed

Conditional Executions

Repeated Executions - loops

Functional Definitions

Conditional Execution

If Statement
� If statement

if m%n != 0:

(m, n) = (n, m%n)

Second statement is executed only if the condition m%n 0 is True

Indentation demarcates body of if - must be uniform

if condition:

statement_01 # executes conditionally

statement_02 # executes conditionally

statement_03 # executes unconditionally

� Alternative Execution

if m%n != 0:

(m, n) = (n, m%n)

else:

gcd = n

else is optional

Shortcuts for conditions

Numeric value 0 is treated as false

Empty sequence “ ,ˮ [] is treated as false

Everything else is True

Multiway Branching, elif

if x == 1:

 y = f1(x)

else:

 if x == 2:

 y = f2(x)

 else:

 if x == 3:

 y = f3(x)

Python H Bharath Bhat 25

 else:

 y = f4(x)

To avoid this we use else if

if x == 1:

 y = f1(x)

elif x == 2:

 y = f2(x)

elif x == 3:

 y = f3(x)

else:

 y = f4(x)

Loops: Repeated actions

for loop
Repeat something a fixed number of times

list = [1, 2, 3, 4]

for i in list:

y = y*i

z = z+1

Repeating n times:

range(0, n) generates sequence 0, 1, 2,….., n-1

range(i, j) generates sequence i, i+1, i+2,…, j-1

def flist(n):

 flist = []

 for i in range(1, n+1):

 if n%i == 0:

 flist = flist + [i]

 return flist

print(flist(9))

'''

Outputs

[1, 3, 9]

'''

More about range

range(i, j) produces a sequence from i, i+1, i+2, ..., j-1

ranje(j) automatically ranges from 0; 0, 1, 2, …, j-1

range(i, j, k) increments from k; i, i+k, …, i+nk

Stops with n such that i+nk < j ≤ i+(n+1)k

Count Down: Make n negative

range(i, j, 1, i>j, produces i, i-1, i-2, …, j+1

If k is positive and i≥j, it will generate empty sequence

Python H Bharath Bhat 26

If k is negative and i≤j

If k is negative, stop before j

range(12, 1, 3 produces 12, 9, 6, 3

Compare the following

for i in 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

for i in range(0, 10

Can convert range() into list using list()

list(range(0,5))

'''

Output

[0, 1, 2, 3, 4]

'''

while conditional loop
Often we donʼt know the number of repetitions in advance

while is executed if the condition evaluates to True

After each iteration check the condition again

Repeat based on condition

while condition:

statement_01

...

statement_02

for and while:

primeUptoNo()

Know we have to scan from 1 to n, use for

nprimes()

Range to scan not known in advance, use while

Break and Continue statements
� break statement

Exits the loop

def findpos(l, v):

 pos, i= -1, 0

 for x in l:

 if x == v:

 pos = i

 break

 i = i+1

 return pos

print(findpos(sample, 5))

print(findpos(sample, 9))

Python H Bharath Bhat 27

'''

Outputs

4

6

'''

def findpos(l, v):

 pos = -1

 for i in range(len(l)):

 if l[i] == v:

 pos = i

 break

 # If pos not in the loop, pos is -1

 return pos

break, if v is found

terminate loop normally - v is not found

print(findpos(sample, 5))

print(findpos(sample, 9))

print(findpos(sample, 4))

'''

Outputs

4

6

-1

'''

In python, loop can also have else: else signals normal termination (incase of break)

def findpos(l, v):

 for i in range(len(l)):

 if l[i] == v:

 pos = i

 break

 else:

 pos = -1 # No break, v not in l

 return pos

print(findpos(sample, 5))

print(findpos(sample, 9))

print(findpos(sample, 4))

'''

Outputs

4

6

-1

'''

� continue statement

Returns back to the start of the loop

while True:

 name = input('Who are you: ')

 if name != 'bharath':

 continue

Python H Bharath Bhat 28

 password = input('Hello Bharath, Whats the password: ')

 if password == 'bharath28':

 break

print('Access granted')

'''

Output

Who are you: bh

Who are you: bharath

Hello Bharath, Whats the password: bha

Who are you: bharath

Hello Bharath, Whats the password: bharath28

Access granted

'''

Function Definition

def f(a, b, c):

statement_01

statement_02

...

return (v)

Function name(arguments/parameters)

Body is intended

return() statement exists and returns a value

Passing values to functions
Argument value is substituted for name

def power(x, n):

 ans = 1

 for i in range(0, n):

 ans = ans*x

 return ans

print(power(3, 5))

'''

Outputs

243

'''

Python H Bharath Bhat 29

Same rules apply for mutable, immutable values

Immutable values will not be affected at calling point

Mutable values will be affected

def update(l, i, v):

 if i >= 0 and i < len(l):

 l[i] = v

 return True

 else:

 return False

ns = [3,11,12]

z = 8

print(update(ns,2,z),ns) # ns is [3, 11, 8]

print(update(ns,4,z),ns) # z remains 8

'''

Outputs

True [3, 11, 8]

False [3, 11, 8]

'''

Return value may be ignored

If there is no return(), function ends when last statement is reached

Scope of names in a function
Names within a function have local scope

def name(x):

 n = 17

 return x

n = 7

v = name(28)

print(n, v) # Name x inside the function is seperate from x outside

'''

Outputs

Python H Bharath Bhat 30

7 28

'''

Defining Functions
A function must be defined before it is invoked

A python program is executed from top to bottom

Recursive Functions
A function can call itself - recursion

def factorial(n):

 if n<=0:

 return 1

 else:

 val = n*factorial(n-1)

 return val

print(factorial(5))

'''

Outputs

120

'''

Passing Arguments by Name

def power(x,n):

 ans = 1

 for i in range(0,n):

 ans = ans*x

 return ans

print(power(n=5, x=4)) # 4^5 (4*4*4*4*4)

'''

Outputs

1024

'''

Default Arguments
Recall int(s) that converts string to integer

int(ˮ76ˮ) genertaes an 76

But, int(Aˮ5ˮ) generates an error

Actually int(s,b) takes two arguments, string s and base b

b has default value 10

print(int("A5",16))

print(int("AB5",16))

Output 165 (10*16^1+5)

Python H Bharath Bhat 31

Output 2741 (10*16^2 + 11*16^1 + 5) → 2560+176+5

print(int('10100',2))

Output 20 (1*2^4 + 1*2^2) → 16+4

def f(a, b, c=14, d=22):

....

f(13,12 is interpreted as f(13, 12, 14, 22

f(13, 12, 16 is interpreted as f(13, 12, 16, 22

Default values are identified by position, must come at the end

Order of the arguments matter

Function definitions
def associates a function body with a name

Flexible, like other value assignments to name

Definition can be conditional

a=9

b=8

if a>b:

 def sub(a,b):

 res = a-b

 return res

else:

 def sub(a,b):

 res = b-a

 return res

print(sub(a,b))

a=8

b=9

if a>b:

 def sub(a,b):

 res = a-b

 return res

else:

 def sub(a,b):

 res = b-a

 return res

print(sub(a,b))

'''

Outputs

1

1

'''

Can assign a function to a new name

def f(a,b,c):

...

Python H Bharath Bhat 32

g=f

Now g is another name for f

Apply f to x n times

def apply(f, x, n):

 res = x

 for i in range(n):

 res = f(res)

 return res

def square(x):

 return x*x

apply(square, 5, 2)

Output: (5^2)^2

Examples

Prime Finder Finds whether the number is prime or not.

def primeFinder(n):

 if n == 1:

 return 'non-prime'

 else:

 factorlist = []

 for i in range(1,n+1):

 if n%i == 0:

 factorlist.append(i)

 if len(factorlist) > 2:

 return 'non-prime'

 else:

 return 'prime'

print(primeFinder(9))

print(primeFinder(31))

print(primeFinder(69))

print(primeFinder(11))

print(primeFinder(121))

print(primeFinder(1))

'''

Output

non-prime

prime

non-prime

prime

non-prime

non-prime

'''

Prime upto n: List all primes below a given number

Python H Bharath Bhat 33

def primeUptoNo(n):

 primelist = []

 for i in range(1,n+1):

 if primeFinder(i) == 'prime':

 primelist.append(i)

 return primelist

print(primeUptoNo(13))

print(primeUptoNo(8))

print(primeUptoNo(30))

'''

Outputs

[2, 3, 5, 7, 11, 13]

[2, 3, 5, 7]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

'''

First n prime numbers: List the first n prime numbers

def nprimes(n):

 primelist = []

 count = 0

 i = 1

 while count < n:

 if primeFinder(i) == 'prime':

 count += 1

 primelist.append(i)

 i=i+1

 return primelist

print(nprimes(9),len(nprimes(9)))

print(nprimes(20),len(nprimes(20)))

'''

Outputs

[2, 3, 5, 7, 11, 13, 17, 19, 23] 9

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71] 20

'''

Arrays and lists
Arrays

Single block of memory, elements of uniform type

Typically size of sequence is fixed in advance

Indexing is fast

Access seq[i] in constant time for any i.

Compute offset from start of memory block

Inserting between seq[i] and seg[i+1] is expensive

Python H Bharath Bhat 34

Contraction is expensive

Lists
Values scattered in memory

Each element points to the next - ‘linkedʼ list

Flexible size

Follow i links to access seq[i]

Cost proportional to i

Inserting or deleting an element in an element is easy.

Operations
Exchange seq[i] and seg[j]

Constant time in array, linear time in lists

Delete seq[i] or insert v after seq[i]

Constant time in Lists (if we are already at seq[i])

Linear time in array - because of shifting

Algorithms on one data structure may not transfer to another

Binary Search

Operating on Lists
Update an entire list

map(f, l) applies f to each element of l

Output of map(f, l) is not a list

Use list(map(f, l)) to get a list

Use list(map(f, l)) to get a list

Can be used directly inside a loop

map function

def f(x):

 return x*x

l = [2,3,6,7]

num = map(f, l)

print(list(num))

Output [4, 9, 36, 49]

Extracting list of primes from list numberlist

def isprime(n):

 if n < 2:

 return False

 for i in range(2, int(n ** 0.5) + 1):

 if n % i == 0:

 return False

Python H Bharath Bhat 35

 return True

numberlist = list(range(0,100))

primelist = []

for i in numberlist:

 if isprime(i):

 primelist.append(i)

print(primelist)

'''

Output

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,

'''

filter function

filter(p, l) checks p for each element of l

Output is sublist of values that satisfy p

List Comprehension
Squares of even numbers below 100

def square(x):

 return x*x

def iseven(x):

 if x%2 == 0:

 return True

 else:

 return False

x=2

value=[square(x) for i in range(100) if iseven(x)]

print(value)

Output: [4, 4

Binary Search
Is a value present in a collection seq

Does the structure of seq matter

Array vs list

Does the organization of the information matter?

Values sorted/unsorted

The unsorted case

def search(seq, v):

 for i in seq:

 if i == v:

 return True

 return False

Python H Bharath Bhat 36

listx=[2,1,6,5,7,8,9,4,5,4]

print(listx)

print(search(listx, 9))

print(search(listx, 6))

print(search(listx, 10))

'''

Output

[2, 1, 6, 5, 7, 8, 9, 4, 5, 4]

True

True

False

'''

Worst Case: 1. v is not in the list 2. v is the last value in the list

Need to scan the entire sequence

Time proportional to length of the sequence

Does not matter if seq is array or list

The sorted case

Compare v with midpoint of seq

If seq[mid] == v: the value is found

If v < midpoint, search left half of seq

If v > midpoint, search right half of seq

def binarySearch(seq, value, l, r):

 seq.sort()

 if r-l == 0:

 return False

 mid = (l+r)//2

 if value == seq[mid]:

 return True

 if value < seq[mid]:

 return binarySearch(seq, value, l, mid)

 else:

 return binarySearch(seq, value, mid+1, r)

listx=[2,1,6,5,7,8,9,4,5,4]

print(listx)

print(binarySearch(listx, 9, 0, len(listx)))

print(binarySearch(listx, 6, 0, len(listx)))

print(binarySearch(listx, 10, 0, len(listx)))

'''

Outputs

[2, 1, 6, 5, 7, 8, 9, 4, 5, 4]

True

True

False

'''

Python H Bharath Bhat 37

How long will it take

Each step halves the interval to search

For an interval of size 0, the answer is immediate

T(n): time to search in a sequence of size n

T0 1

T(n) 1T(n/2); 1 is for finding the mid

Unwinding the recurrence

Efficiency
Usually report worst case behavior

When value is not found it is the worst case

Worst case is easier to calculate than average case or other more reasonable measures

Interested in broad relationship between input size and running time

O notation

Interested in broad relationship between input and running time.

Write T(n) O(n), T(n) O(n · logn), …. to indicate this

Linear scan is O(n) for arrays and lists

Python can do about basic steps in a second.

Command in Linux to check time execution of the python program.

Reports real, user, sys time.

User time must be considered.

107

Python H Bharath Bhat 38

time python3 filename.py

Theoretically is considered efficient

Polynomial Time

In practice even has very limited effective range

Inputs larger than size 5000 take very long

Sorting
Searching for a value

Unsorted Array - linear scan, O(n)

Sorted Array - binary search, O(log n)

Other advantages of sorting

Finding median value: midpoint of sorted list

Checking for duplicates

Building a frequency table of values

Selection Sort
Select the next element in sorted order (ascending/descending).

Move it into its correct place in the final sorted list.

74 32 89 55 21 64

Old list ↑ | New list ↓

21

21 32

21 32 55

21 32 55 64

21 32 55 64 74

21 32 55 64 74 89

New list will be formed in the above case.

T (n) = O(n)k

T (n) = O(n)2

Python H Bharath Bhat 39

Avoid using a second list

Swap minimum element with value in first position

Swap second minimum element to second element.

74 32 89 55 21 64

21 32 89 55 74 64

21 32 89 55 74 64

21 32 55 89 74 64

21 32 55 74 89 64

21 32 55 74 64 89

Instead of making a new list, we have systematically moved the smallest element to the start of the section we are
looking at.

def selectionSort(l):

 for start in range(len(l)):

 minpos = start

 for i in range(start, len(l)):

 if l[i] < l[minpos]:

 minpos = i

 (l[start], l[minpos]) = (l[minpos], l[start])

 return l

listx=[2,1,6,5,7,8,9,4,5,4]

print(listx)

print(selectionSort(listx))

'''

Outputs

[2, 1, 6, 5, 7, 8, 9, 4, 5, 4]

[1, 2, 4, 4, 5, 5, 6, 7, 8, 9]

'''

Analysis of Selection sort
Finding minimum in unsorted segment of length k requires one scan, k steps.

In each iteration, segment to be scanned reduces by 1

for the first slice + for the second slice of list + ….. + for the last slice of the list 1

Insertion Sort

⁍

Python H Bharath Bhat 40

Start building a sorted sequence with one element

Pick up next unsorted element and insert it into its correct place in the already sorted sequence.

74 32 89 55 21 64

74

32 74

32 74 89

32 55 74 89

21 32 55 74 89

21 32 55 64 74 89

def insertionSort(l):

 for sliceEnd in range(len(l)):

 pos = sliceEnd

 while pos > 0 and l[pos] < l[pos-1]:

 (l[pos], l[pos-1]) = (l[pos-1], l[pos])

 pos = pos -1

 return l

listx=[2,1,6,5,7,8,9,4,5,4]

print(listx)

print(insertionSort(listx))

'''

Outputs

[2, 1, 6, 5, 7, 8, 9, 4, 5, 4]

[1, 2, 4, 4, 5, 5, 6, 7, 8, 9]

'''

Analysis of Insertion Sort
Inserting a new value in sorted segment of length requires up to k steps in the worst case

In each iteration, sorted segment in which to insert increased by 1

Recursive Computation
Inductive definitions naturally give rise to recursive programs

⁍ = O(n)2

Python H Bharath Bhat 41

Factorial

def factorial(n):

 if n == 0:

 return 1

 else:

 return(n * factorial(n-1))

print(factorial(5))

'''

Outputs

120

'''

Inductive Definitions for lists
List can be decomposed as

First (or Last) element

Remaining list with one less element

Define list functions inductively

Base case: empty list or list size 1

Inductive step: f(l) in terms of smaller sublists of l

Merge Sort
Sort A0 n//2

Sort A[n//2 n]

Merge sorted halves into B0 n]

Sorting the halves: Recursively, using same strategy

List

74 32 89 55 21 64

Halved List 01 Halved List 02

Python H Bharath Bhat 42

74 32 89 55 21 64

Sorted Halved List 01

32 74 89

Sorted Halved List 02

21 55 64

Merge both the sorted list

21

21 32

21 32 55

21 32 55 64

21 32 55 64 74

21 32 55 64 74 89

Sorting

32 74 89

21 55 64

32 74 89

55 64

74 89

55 64

74 89

64

74 89 89

Example 02

Procedure
Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first element of A and B and move the smaller of the two into C

Repeat until all elements in A and B have been moved

Python H Bharath Bhat 43

def merge(A, B):

 (C, m,n) = ([],len(A), len(B))

 (i,j) = (0,0)

 while i+j < m+n:

 if i == m:

 C.append(B[j])

 j = j+1

 elif j == n:

 C.append(A[i])

 i = i+1

 elif A[i] <= B[j]:

 C.append(A[i])

 i = i+1

 elif A[i] > B[j]:

 C.append(B[j])

 j = j+1

 return C

a = list(range(0, 50, 2)) # Even numbers from 0 to 50

b = list(range(1, 40, 2)) # Odd numbers from 1 to 40

print(a,b)

print(merge(a,b))

print(len(merge(a,b)))

'''

Outputs

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 4

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

45

'''

def mergeSort(a, left, right):

 if right - left <= 1:

 return a[left : right]

 if right - left > 1:

 mid = (left+right)//2

 l = mergeSort(a, left, mid)

 r = mergeSort(a, mid, right)

 return merge(l,r)

a = list(range(1, 100, 2)) + list(range(0, 100, 2))

print(a)

print(mergeSort(a, 0, len(a)))

'''

Outputs

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 4

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

''''

Analysis of Merge
Merge A of size m, B of size n into C

In each iteration, we add one element to C

Size of C is m+n

m+n 2 max(m, n)

Hence O(max(m, n)) O(n) if m = n

Python H Bharath Bhat 44

Analysis of Merge Sort
To sort A0 n] into B0 n]

If n is 1, nothing to be done

Otherwise

Sort A0 n//2 into l (left)

Sort A[n : n//2 into l (left)

Merge a nd r into B

T(n): time taken by merge sort on input size n

Assume, for simplicity, that

T(n) 2T(n/2) + n

Two subproblems of size n/2

Merging solutions requires time

Solve the recurrence by unwinding

Merge Sort: Shortcomings
Merging A and B creates a new array C

No obvious way to efficiently merge in place

Extra storage can be costly

Inherently recursive

Recursive call return are expensive

Quick Sort

Alternative approach to Merge Sort
Extra space is required to merge

Merging happens because elements in left half must right and vice versa

Can we divide so that everything to the left is smaller than everything to the right

No need to merge

n = 2k

O(n/2 + n/2) = O(n)

Python H Bharath Bhat 45

Divide and conquer without merging
Suppose the median value in A is m

Move all values ≤ m to left half of A

Right half has values > m

This shifting can be done in place, in time

Recursively sort left and right halves

A is now sorted, no need to merge now

Find median: Sort and pick up middle element

But our aim is to sort

Instead, pick up some value in A pivot value

Split A with respect to this pivot element

Quick Sort: Algorithm
Choose a pivot element: typically the first element in the array

Partition A into lower and upper parts with respect to pivot

Move pivot between lower and the upper partition

Sort the partition recursively

43 32 22 78 63 57 91 13

Red: Pivot Element

Yellow: Elements lesser than pivot element, goes to the left of pivot element

Green: Elements greater than pivot element, goes to the right of pivot element

13 32 22 43 63 57 91 78

Sort the left and right of the pivot element

13 22 32 43 57 63 78 91

Quick Sort: Partitioning

43 32 22 78 63 57 91 13

 | 43 ↑ 43 ↑

When you identify 13 as smaller number, swap both 13 and 78

43 32 22 13 63 57 91 78

 | 43 ↑ 43 ↑

Swap the pivot element 43 with the last number of the left partition 13

13 32 22 43 63 57 91 78

| ≤pivot | Pivot | Pivot |

def quickSort(A, l, r):

 if r-l <= 1:

 return()

 yellow = l+1

 for green in range(l+1, r):

O(n)

T (n) = 2T (n/2) + n = O(n⋅ logn)

Python H Bharath Bhat 46

 if A[green] <= A[l]:

 (A[yellow], A[green]) = (A[green], A[yellow])

 yellow = yellow+1

 (A[l], A[yellow-1]) = (A[yellow-1], A[l])

 quickSort(A, l, yellow-l)

 quickSort(A, yellow, r)

 return A

a = list(range(100, 1, -2)) + list(range(1,100,2))

print(a)

print(quickSort(a, 0, len(a)))

'''

Outputs

[100, 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 68, 66, 64, 62, 60, 58, 56,

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2

'''

Analysis of Quick Sort
Worst Case

Pivot is maximum or minimum

One of the partition is empty

Other has size n-1

Already sorted array is worst case input

But …

Average case is

All permutations of n values, each equally likely

Average running time across all permutations

Sorting is rare example where average case can be computed

Quicksort: Randomization
Worst case arises because of fixed choice of pivot

We chose the first element

For any fixed strategy (last element, midpoint), can work backwards to construct worst case

Instead, choose pivot element randomly

Pick any index in range(0, n) with uniform probability

Expected running time is again

Stable Sorting
Sorting on multiple criteria

Assume students are listed in alphabetical order

Now sort students by marks

After sorting, are students with equal marks still in alphabetical order?

Stability is crucial in applications like spreadsheets

T (n) = T (n− 1) + n = T (n− 2) + T (n− 1) + 1 = 1 + 2 + ... + n = O(n)2

O(n⋅ logn)

O(n)2

O(n⋅ logn)

Python H Bharath Bhat 47

Sorting column B should not disturb previous sort on column A

Swap operation during partitioning disturbs the original order

Merge sort is stable if we merge carefully

Do not allow elements from right to overtake elements from left

Favour left list when breaking ties

Quicksort in Practice
Very fast

Spreadsheets

Built in sort functions in programming languages

Exception Handling
Common Errors

y = x/z, but z has value 0

y = int(s), but string s is not a valid integer

y 5*x, but x does not has a value

y = l[i], but i is not a valid index for list l

Try to read from a file, but the file does not exist

Some errors can be anticipated, if anticipated, it can be considered as an exceptional case

Contingency Plan - exception handling

Exception Handling
If something goes wrong, provide “corrective actionˮ

Corrective action depends on the error type

File not found: display a message and ask user to retype the filename

List index out of bounds - provide diagnostic information to help debug the error

Need mechanism to internally trap exceptions

An untapped exception will abort the program

Types of Errors

Syntax Errors
Most common error, invalid Python code

SyntaxError: invalid syntax

Nothing much can be done with these

Run Time Errors
Error while code is executing (run-time errors)

Python H Bharath Bhat 48

Name used before value is defined

NameError: name ‘qʼ is not defined

Division by zero in arithmetic expression

ZeroDiviionError: division by zero

Invalid list Index

IndexError: list assignment index out of range

Terminologies
Raise an exception

Run time error → signal error type, with diagnostic information

NameError: name ‘xʼ is not defined

Handle an exception

Anticipate and take corrective action based on error type

Unhandled exception aborts execution

Handling exceptions
By using try block: code where error may occur

Zero Division Error

Python H Bharath Bhat 49

def spam(divideby):

 return 42/divideby

try:

 print(spam(9))

 print(spam(6))

 print(spam(0))

except ZeroDivisionError:

 print("error: invalid argument")

'''

Outputs

4.666666666666667

7.0

error: invalid argument

'''

Index Error

except block: what to do if Index Error occurs

def listPrint(l,n):

 sq = []

 for i in range(n):

 sq.append(l[i]*l[i])

 return sq

l = [1,2,3,4]

try:

 print(listPrint(l,4))

 print(listPrint(l,5))

except IndexError:

 print("Index Error is found: ",l)

'''

Outputs

[1, 4, 9, 16]

Index Error is found: [1, 2, 3, 4]

'''

Name Error

x = 108

try:

 print(x)

 print(y)

except NameError:

 print("Entered variable is missing (hence pritning x): ",x)

'''

Outputs

108

Entered variable is missing (hence pritning x): 108

'''

Common code to handle multiple errors

def spam(divideby):

 return 42/divideby

Python H Bharath Bhat 50

x = 7

try:

 print(spam(x))

 print(spam(y))

 print(spam(0))

except (NameError, ZeroDivisionError):

 print("Error found")

'''

Outputs

6.0

Error found

'''

def spam(divideby):

 return 42/divideby

x = 7

try:

 print(spam(x))

 #print(spam(y))

 print(spam(0))

except (NameError, ZeroDivisionError):

 print("Error found")

'''

Outputs

6.0

Error found

'''

except: Catch all exceptions

Execution is sequential, if any error is found, itʼll skip the next error and goes to the default statement

else:

Execute if try terminates normally, no errors

def spam(divideby):

 return 42/divideby

x = 7

try:

 print(spam(x))

except:

 print("Error found")

else:

 print("done and dusted")

'''

Outputs

6.0

done and dusted

'''

Add a new entry to this dictionary

Python H Bharath Bhat 51

Using Exception Handling in a Positive Manner
Traditional Manner

scores = {'Dhawan':[3,22], 'kohli':[200,3]}

if 'b' in scores.keys():

 scores['b'].append('s')

else:

 scores['b'] = ['s']

print(scores)

'''

Outputs

{'Dhawan': [3, 22], 'kohli': [200, 3], 'b': ['s']}

'''

Using exceptions

scores = {'Dhawan':[3,22], 'kohli':[200,3]}

try:

 scores['b'].append('s')

except KeyError:

 scores['b'] = ['s']

print(scores)

'''

Outputs

{'Dhawan': [3, 22], 'kohli': [200, 3], 'b': ['s']}

'''

Interacting with the user
Inputs

Program needs to interact with the user

Receive Input

Display Output

Standard input and output

Input from keyboard

Output to screen

userdata = input()

print(userdata)

userdata = input("enter a number: ")

print(type(userdata))

'''

Outputs

78

78

enter a number: 78

Python H Bharath Bhat 52

<class 'str'>

'''

Input read by the program is always a string, convert that into an integer

userdata = int(input("enter a number: "))

print(type(userdata))

'''

Outputs

enter a number: 78

<class 'int'>

'''

But, when a user inputs any other value except integer, the program generates an error

Exception handling can be used

while True:

 try:

 userdata = int(input("enter a number: "))

 print(type(userdata))

 except ValueError:

 print("Not a number try again")

 else:

 print("Break")

 break

'''

Outputs

enter a number: bharath28

Not a number try again

enter a number: 28k

Not a number try again

enter a number: 28

<class 'int'>

Break

'''

Outputs

Printing on screen
Print values of names, separated by spaces

a = 'Hi'

b = "bruh"

print(a,b,"lol-string")

Python H Bharath Bhat 53

Output: Hi bruh lol-string /

Fine tuning print()
By default, print() appends a new line character ‘\nʼ to whatever it printed

Each print() appears a new line

Specify what to append with argument using end=ˮ…“

print("Bharath is a legend.")

print("yes, I know")

print("Bharath is a legend.",end=" ")

print("yes, I know")

print("Bharath is a legend.",end=".")

print("yes, I know")

print("Bharath is a legend.",end=" surely ")

print("yes, I know")

'''

Outputs

Bharath is a legend.

yes, I know

Bharath is a legend. yes, I know

Bharath is a legend..yes, I know

Bharath is a legend. surely yes, I know

'''

Items are separated by space by default

Specify separator with argument sep=ˮˮ

Specifies spaces only mentioned and not by default

x = "is"

y = "well-known"

print("bharath",x,"a",y,"legend.")

print("bharath",x,"a ",y," legend.", sep="")

'''

Outputs

bharath is a well-known legend.

bharathisa well-known legend.

'''

Formatting Print
Specify width to align text

Align text within width - left, right, center

How many digits before/after decimal point

name = 'Bharath'

print(name.rjust(20))

print(name.ljust(20))

print(name.rjust(20,'*'))

print(name.ljust(20,'*'))

print(name.center(20,'*'))

Python H Bharath Bhat 54

'''

Outputs

 Bharath

Bharath

*************Bharath

Bharath*************

******Bharath*******

'''

Dealing with Files
Used to read large volumes of data in files located in disks

Disk Buffers
Disk data is read/written in large blocks

“Bufferˮ is a temporary parking place for disk data

Memory Buffer Disk

Whenever you need to read/write a data it done from or to the buffer, which reads or writes to the disk.

Reading/writing disk data
Open a file - create file handle to file on disk

Like setting up a buffer for the file

Read and write operations are to file handle

Close a file

Write out buffer to disk (flush)

Disconnect the handle

Opening a file

fh = open('profile.txt', 'r')

If file is not found, a new file will be created in the same folder

First argument to open is file name

Can give a full path too

Second Argument is mode for opening a file

Key Letter Function Description

r read opens a file for reading only

w write creates an empty to write to

a append append to an existing file

Reads entire file into name as a single string

contents = fh.read()

print(contents)

'''

Python H Bharath Bhat 55

File contains/output

Hey there,

This is Bharath Bhat

'''

Reads one line into name - lines end with ‘\nʼ

String includes the ‘\n ,̓ unlike input()

content = fh.readlines()

print(content)

Output: ['Hey there,\n', 'This is Bharath Bhat']

Reads entire file as list of strings

Each string is one line, ending with ‘\nʼ

Reading of a file
Reading is a sequential operation

When file is opened, point to position 0, the start

Each successive readline() moves forward

fh.seek(n) - moves pointer to position n

fh.read(n) - reads a fixed number of characters

block = fh.read(12)

print(block)

'''

Output:

Hey there,

T

out of

Hey there,

This is Bharath Bhat

'''

End of file:

When reading incrementally, important to know when file has ended

The following both signal end of file

fh.read() returns empty string “ “

fh.readline() returns empty string “ “

Write to a file
Write string s to file

Python H Bharath Bhat 56

Returns numbers of characters written

Include ‘\nʼ explicitly to go to a new line

fh.write(s)

s = "bharath is a legend"

fh = open('profile.txt','w')

fh.write(s)

Returns 19

fh = open('profile.txt', 'r')

contents = fh.read()

print(contents)

Output: bharath is a legend

Write a list of lines l to a file

Must include ‘\nʼ explicitly for each string

s = "bharath is a legendary person \nHe lives in Bengaluru"

fh = open('profile.txt','w')

fh.writelines(s)

fh = open('profile.txt', 'r')

contents = fh.read()

print(contents)

'''

Output

bharath is a legendary person

He lives in Bengaluru

'''

Closing a file

fh.close()

Flushes output buffer and decouples file handle

All pending writes copies to disk

Write a Half Adder Verilog code using python file handling

code ='''

module half_adder(input a, b, output sum, carry);

 assign sum = a^b;

 assign carry = a&b;

endmodule

'''

adder = open('half_adder.v','w')

adder.write(code) # 113 characters are added to the file

adder.close()

adder = open('half_adder.v', 'r')

adder_content = adder.read()

Python H Bharath Bhat 57

fh.close()

print(adder_content)

'''

Output

module half_adder(input a, b, output sum, carry);

 assign sum = a^b;

 assign carry = a&b;

endmodule

'''

Flushes output buffer and decouples file handle

All pending writes copied to disk

fh.flush()

Manually forces write to disk

Processing file line by line

adder = open('half_adder.v', 'r')

adder_copy = open('full_adder.v','w')

for line in adder.readlines():

 adder_copy.write(line)

Above 2 lines can be replaced with the below 2 lines

contents = adder.readlines()

adder_copy_01.writelines(contents)

adder.close()

adder_copy.close()

adder_copy = open('full_adder.v','r')

content = adder_copy.read()

print(content)

'''

Outputs

module half_adder(input a, b, output sum, carry);

 assign sum = a^b;

 assign carry = a&b;

endmodule

'''

Lines in the file named ‘adder.vʼ was copied to the file named ‘adder_copy.vʼ

Strip new line character
Get rid of trailing ‘\nʼ

Python H Bharath Bhat 58

adder = open('half_adder.v', 'r')

contents = adder.readlines()

for line in contents:

 s = line[:-1]

print(s)

Output: endmodule

Instead, use rstrip() to remove trailing whitespaces. (lstrip(), strip() can also be used)

for line in contents:

 s = line.rstrip()

print(s)

Output: endmodule

String Processing
String processing functions make it easy to analyze and transform contents

Search and replace text

Export spreadsheets as text file (csv: comma separated value format) and process columns

Strip Whitespaces
s.rstrip(): removes trailing (right) whitespaces

s.lshift(): removes leading (left) whitespaces

s.strip(): removes whitespaces both the leading and trailing whitespaces of the string

name = " H Bharath Bhat "

print(name.rstrip())

print(name.lstrip())

print(name.strip())

'''

Outputs

 H Bharath Bhat

H Bharath Bhat

H Bharath Bhat

'''

Searching for text
s.find(value)

Returns first position in s where the given pattern occurs, 1 if no occurrence of the pattern in the string

Python H Bharath Bhat 59

name.find('Bharath') # Output: 7

name.find('Bhat') # Output: 15

name.find('Bhatt') # Output: -1

s.find(pattern, start, end)

name.find('Bha',1,20) # Output: 7

name.find('Bha',13,20) # Output: 15

Search for pattern in slice s[start : end]

s.index(pattern), s.index(pattern, l, r)

Like find, but raise ValueError if pattern not found

s = 'brown fox grey dog brown fox'

print(s.find('brown'))

print(s.find('brown',5,len(s)))

print(s.find('cat'))

print(s.index('brown'))

print(s.index('brown',5,len(s)))

'''

Outputs

0

19

-1

0

19

'''

Search and Replace
s.replace(fromstr, tostr)

Returns copy of s with each occurrence of fromstr replaced by tostr

s.replace(fromstr, tostr, n)

Replace at most first n copies

Note that s itself is unchanged - strings are immutable

s.replace('brown','black') # Output: black fox grey dog black fox

s.replace('brown','black',1) # Output: black fox grey dog brown fox

Splitting a string
Export spreadsheet as ‘comma separated valueʼ text file

Want to extract columns from a line of text

Split the line into chunks between commas

Can split any using any separator string

columns = s.split(' ') # Output: ['brown', 'fox', 'grey', 'dog', 'brown', 'fox']

Python H Bharath Bhat 60

Split into at most n chunks

columns = s.split(' ',2) # Output: ['brown', 'fox', 'grey dog brown fox']

csvline = '6,7,8'

print(csvline.split(',')) # Output: ['6', '7', '8']

print(csvline.split(',',1)) # Output: ['6', '7,8']

csvline = '6#?7#?8'

print(csvline.split('#?')) # Output: ['6', '7', '8']

Joining Strings
Recombine a list of strings using a separator

Example 01

csvline = ','.join(columns) # Output: brown,fox,grey,dog,brown,fox

Example 02

date = '24'

month = 'may'

year = '2002'

birthdate = '-'.join([date, month, year])

print(birthdate)

Output: 24-may-2002

Converting Case
Convert uppercase to lowercase and lowercase to uppercase

s.capitalize() - return a new string with first letter uppercase, rest lower

s.lower() - converts all uppercase to lowercase

s.upper() - converts all lowercase to uppercase

s.title() - converts all the starting letter of the words to uppercase and rest to lowercase

s.swapcase() - swaps lowercases with uppercases and vise versa

name = 'bharath Bhat'

print(name.capitalize()) # Output: Bharath bhat

print(name.lower()) # Output: bharath bhat

print(name.upper()) # Output: BHARATH BHAT

print(name.title()) # Output: Bharath Bhat

print(name.swapcase()) # Output: BHARATH bHAT

Resizing Strings
s.center(n) - returns string of length n with s centered, rest blank

s.center(n, ‘*ʼ) - fill the rest with * instead of blanks

s.ljust(n), s.rjust(n), s.rjust(n, ‘:ʼ), …

Similar, but left/right justify s in returned string

Python H Bharath Bhat 61

print(name.center(50)) # bharath Bhat |

print(name.center(50,'-')) # -------------------bharath Bhat-------------------

print(name.rjust(40,'→')) # →→→→→→→→→→→→→→→→→→→→→→→→→→→→bharath Bhat

print(name.ljust(40,'←')) # bharath Bhat←←←←←←←←←←←←←←←←←←←←←←←←←←←←

Other Functions
Check the nature of characters in a string

name = 'Bharath Bhat'

password = 'bharath28'

print(name.islower()) # False

print(name.isupper()) # False

print(name.isalpha()) # False because of space

print(password.isalnum()) # True

namee = 'BharathBhat'

print(namee.isalpha()) # True

number = '7892104186' # it must be a string only

print(number.isdecimal()) # True

print(name.istitle()) # True

String format() method
Example

print('First: {0}, second: {1}'.format(47,11))

print('second: {1}, First: {0}'.format(47,11))

'''

Outputs

First: 47, second: 11

second: 11, First: 47

'''

Replace arguments by position in message string

Can also replace arguments by name

print('one: {f}, two: {s}'.format(f=47,s=11))

print('one: {f}, two: {s}'.format(s=47,f=11))

'''

Outputs

one: 47, two: 11

one: 11, two: 47

'''

Formatting

Python H Bharath Bhat 62

print('value:{0:3d}'.format(4)) # value: 4

3d describes how to display the value 4

d is a code specifies that 4 should be treated as an integer value

3 is the width of the area to show 4

print('value:{0:6.2f}'.format(47.523)) # value: 47.52

6.2f describes how to display the value 47.523

f is a code specifies that 47.523 should be treated as a floating point value

6 width of the area to show 47.523

2 number of digits to show after decimal point

Doing Nothing in Python
Blocks such as except:, else:, … cannot be empty

Use pass for a null statement

while True:

 try:

 userdata = int(input("enter a number: "))

 print(type(userdata))

 except ValueError:

 print("Not a number try again")

 else:

 print("Break")

 break

'''

Outputs

enter a number: bharath28

Not a number try again

enter a number: 28k

Not a number try again

enter a number: 28

<class 'int'>

Break

'''

while True:

 try:

 userdata = int(input("enter a number: "))

 print(type(userdata))

 except ValueError:

 pass

 else:

 print("Break")

 break

'''

Outputs

enter a number: bh4

enter a number: gh

enter a number: 45

Python H Bharath Bhat 63

<class 'int'>

Break

'''

pass can be used to fill the empty cases in if, if-elif, case statements

The value None
None is a special value used to denote ‘nothingʼ

Use it to initialize a name and later check if it has been assigned a valid value

Removing a list entry
Removes the specified index number and automatically contracts the list and shifts elements in l[n+1] left

l = [1,4,3,4,5,6]

del(l[4])

l = [1, 4, 3, 4, 6]

Note that value at the specified index is removed

Makes the value undefined

Also works for dictionaries

del(d[k]) removes the key k and its associated value

Global Variables
Scope of a Name

Scope of name is the portion of code where it is available to read and update

By default, in python, scope is local to functions

But actually, only if we update the name inside the function

def f():

 y = x

 print(y)

x = 7

f()

Output: 7

def f():

 y = x

 print(y)

 x = 22

x = 7

f()

Python H Bharath Bhat 64

UnboundLocalError Traceback (most recent call last)

Cell In[2], line 7

 4 x = 22

 6 x = 7

----> 7 f()

Cell In[2], line 2, in f()

 1 def f():

----> 2 y = x

 3 print(y)

 4 x = 22

UnboundLocalError: local variable 'x' referenced before assignment

If x is not found in f(), Python looks at enclosing function for global x

If x is updated in f(), it becomes a local name

Global Variables
Actually this applies to immutable values

def f():

 y = x[0]

 print(y)

 x[0] = 22

x = [7]

f()

Output: 7

Global names that point to mutable values can be updated within a function

Declare a name to be global: refers that x in function refers to the same x in the main function too

Nest Function Definitions
Can define local ‘helperʼ functions

g() and h() are only visible to f()

def f():

 def g(a):

 return a+1

 def h(b):

 return 2*b

 global x

 y = g(x) + h(x)

 print(y)

 x = 22

x = 7

f()

Output: 22

Python H Bharath Bhat 65

If we look up x, y inside g() or h() it will first look in f(), then outside

Can also declare names global inside g(), h()

Intermediate scope declaration: nonlocal

Data Structures
Algorithms Data Structures Program Acc to Niklaus Wirth

Array/lists - sequences of values

Dictionaries - key-value pairs

In-built data types

Sets in python
List with braces, duplicates automatically removed

colours = {'red','black','green','red'}

print(colours)

Output: {'red', 'black', 'green'}

Create an empty set

colours = set()

Note, not colours = { } - empty dictionary

Set membership

'black' in colours # True

Convert a list into a set

numbers = set([1,2,4,5,1,6,7]) # {1, 2, 4, 5, 6, 7}

print(numbers)

letters = set('banana') # {'b', 'a', 'n'}

print(letters)

Set operations

odd = set([1,3,5,7,9,11])

prime = set([2,3,5,7,11])

Union

print(odd | prime) # {1, 2, 3, 5, 7, 9, 11}

Intersection

print(odd & prime) # {11, 3, 5, 7}

Set difference

print(odd - prime) # {1, 9}

print(prime - odd) # {2}

Exclusive or

print(odd ^ prime) # {1, 2, 9}

Python H Bharath Bhat 66

Stacks
Stack is a last-in, first out list (ex: Chairs)

push(s, x) - add x to stack s

pop(s) - return most recently added element

Maintain stack as list, push and pop from the right

push(s, x) is s.append(x)

s.pop() - python built-in, returns last element

Stacks are natural to keep track of recursive function calls

Queues
First-in, first-out sequences

add(q, x) - adds x to rear of the queue q

remove(q) - removes element at head of q

Using python lists, left is rear, right is front

add(q, x) is q.insert(0, x)

l.insert(j, x), insert x before position j

remove(q) is q.pop()

